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Abstract: With reference to regular fractions of general s-level factorials, we consider the

design criterion of general minimum lower order confounding (GMC) that aims, in an elab-

orate manner, at keeping the lower order factorial effects unaliased with one another to the

extent possible. Using a finite projective geometric formulation, that involves identification

of the alias sets with the points of the geometry, we derive explicit formulae connecting the

key terms for this criterion with the complementary set. These results are then applied to

find optimal designs under the GMC criterion.
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1. Introduction

The problem of optimal selection of regular fractional factorial plans, under model

uncertainty, has received significant attention in the literature. The criterion of minimum

aberration (MA) has gained much popularity in this context. In addition, criteria such as

maximum estimation capacity (MEC) and clear effects have been proposed and studied.

We refer to Mukerjee and Wu (2006) for a review. All these criteria are based on the

effect hierarchy principle (Wu and Hamada, 2000, p.112) which treats factorial effects

of the same order as equally important and lower order effects as more important than

higher order effects. They all are motivated, in various senses, by the objective of keeping

the lower order factorial effects unaliased with one another to the extent possible. With

reference to two-level factorials, Zhang, Li, Zhao and Ai (2007, hereafter called ZLZA)

recently introduced and discussed at length a new criterion of general minimum lower

order confounding (GMLOC or GMC for short) that aims at achieving the same objective

in a more elaborate and explicit manner.

The purpose of the present work is to develop a theory for the GMC criterion in

terms of complementary sets. The results should be particularly useful in the practically

important nearly saturated situation where the complementary set is relatively small

in size and hence easy to handle. This approach has found much applicability in the

study of optimal designs under the MA or MEC criteria. Considerable additional work
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is, however, required for the present problem because we now need to obtain explicit

relations connecting the aliasing pattern of a design for the lower order factorial effects

with the complementary set. In addition to being directly useful in the study of the GMC

criterion, these identities facilitate a more transparent understanding of such aliasing

pattern. Identification of the alias sets with the points of a finite projective geometry

helps in their derivation. In contrast with ZLZA who studied the GMC criterion in the

two-level case, we consider general s-level factorials where s is a prime or prime power.

This enables us to include, for example, three-level factorials as well in the present study.

2. Background and preliminary results

Consider an sn factorial involving n factors F1, . . . , Fn, each at s levels, where s (≥ 2)

is a prime or prime power. A typical pencil b = (b1, . . . , bn)′ is a nonnull n-vector over

the finite field GF (s), and pencils with proportional elements are considered identical. A

pencil with i nonzero elements is called an ith order pencil (1 ≤ i ≤ n). If these nonzero

elements occur at the j1th, . . ., jith positions, then the pencil represents the ith order

factorial effect Fj1 · · ·Fji . Since pencils with proportional elements are identical, any ith

order effect is represented by (s− 1)i−1 pencils. The case i = 1 gives a main effect while

the case i > 1 corresponds to an interaction.

We will be interested in regular 1/sm fractions of an sn factorial (hereafter, simply

referred to as sn−m designs), where 1 ≤ m < n and, to avoid trivialities, n ≥ 3. For

1 ≤ i ≤ n, let Ai be the number of ith order pencils appearing in the defining relation

of such a design. The resolution of the design is the smallest integer i for which Ai > 0.

Since the main effects are of utmost importance in a factorial setting, in what follows

only designs of resolution three or higher are considered. These designs do not assign

any main effect pencil to the defining relation or entail aliasing of any two such pencils.

Then A1 = A2 = 0 and the sequence (A3, . . . , An) represents the wordlength pattern

(WLP) of the design. The criterion of minimum aberration (MA) aims at sequential

minimization of A3, A4, . . ..

Following ZLZA, we now introduce the GMC criterion, as applicable to an sn−m

design of resolution three or higher. An ith order pencil is said to be aliased with jth

order pencils at degree k if it does not appear in the defining relation and is aliased

with k jth order pencils (excluding itself, in case j = i). Noting that there are Kj [=(
n
j

)
(s− 1)j−1] jth order pencils altogether, for 1 ≤ i, j ≤ n and 0 ≤ k ≤ Kj , define #

i C
(k)
j

as the number of ith order pencils that are aliased with jth order pencils at degree k,

and write #
i Cj for the vector (#i C

(0)
j , #

i C
(1)
j , . . . , #

i C
(Kj)
j ). Also, for 1 ≤ j ≤ n, let #

0Cj be a

row vector of order Kj + 1, with kth element 1 if Aj = k, and 0 otherwise (0 ≤ k ≤ Kj).
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The sequence

#C = (#1C2,
#
2C1,

#
2C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3, . . .) (2.1)

is called the aliased effect-number pattern (AENP) of the design. The AENP incorporates

the WLP via the terms #
0Cj in (2.1) and is, in fact, much more informative than the

WLP because of the terms #
i C

(k)
j (i, j ≥ 1) which explicitly reflect the nature of aliasing.

Note that (2.1) places #
i Cj ahead of #

i∗Cj∗ if and only if either (i) max(i, j) < max(i∗, j∗),
or (ii) max(i, j) = max(i∗, j∗) and i < i∗, or (iii) max(i, j) = max(i∗, j∗), i = i∗ and

j < j∗. As discussed by ZLZA in detail, this entails an arrangement of the terms #
i Cj

in (2.1) in decreasing order of importance from left to right, under the effect hierarchy

principle. In addition, for any fixed i and j, the first element #
i C

(0)
j of #

i Cj signifies no

aliasing, while the subsequent elements #
i C

(k)
j signify progressively more severe aliasing

as k increases from 1 to Kj . From these perspectives, the GMC criterion proposed by

ZLZA aims at sequential maximization of the elements of #C , from left to right. A more

precise definition appears below.

At this stage, we note that some of the terms in (2.1) are uniquely determined by

others that precede them and hence are redundant under the GMC criterion. In a design

of resolution three or higher, any jth order pencil (j ≥ 2) is aliased with at most one

first order pencil, and the number of jth order pencils that are aliased with one first

order pencil equals
∑

k≥1 k #
1C

(k)
j . Hence

#
j C

(1)
1 =

∑

k≥1

k #
1C

(k)
j , #

j C
(0)
1 = Kj − #

j C
(1)
1 −Aj ,

#
j C

(k)
1 = 0 (k ≥ 2).

Furthermore, an inspection of the manners in which a defining pencil can entail aliasing

of a first order pencil with a jth order one shows that

∑

k≥1

k #
1C

(k)
j = (n− j + 1)(s− 1)Aj−1 + j(s− 2)Aj + (j + 1)Aj+1, (2.2)

where An+1 = 0. Thus the #
0Cj (j ≥ 3) in (2.1) can be dropped as they are uniquely

determined by the preceding terms #
1Cu, 2 ≤ u ≤ j − 1. Similarly, the #

j C1 (j ≥ 2) are

redundant because of the terms #
1Cu, 2 ≤ u ≤ j. As a result, the GMC criterion can be

defined on the basis of a simpler version of (2.1) as given by

#C = (#1C2,
#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3, . . .). (2.3)

Definition 1. Let #Cl be the lth element of #C in (2.3), and #C(d1) and #C(d2) be

the AENPs of designs d1 and d2 respectively. Suppose t is the smallest integer such that
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#Ct(d1) 6= #Ct(d2). If #Ct(d1) > #Ct(d2) then d1 is said to have less general lower order

confounding (GLOC) than d2. A design d is said to have general minimum lower order

confounding (GMC) if no other design has less GLOC than d and, in this case, d is

called a GMC design.

A geometric formulation helps in characterizing GMC designs. Write Lw = (sw −
1)/(s − 1). Let P denote the set of the Ln−m points of the finite projective geometry

PG(n −m − 1, s). For any nonempty subset Q of P , define V (Q) as the matrix given

by the points of Q as columns. Then the following well-known lemma holds (see e.g.,

Mukerjee and Wu, 2006, p.40).

Lemma 1. Any sn−m design d of resolution three or higher is represented by an n-subset

T of P such that V (T ) has full row rank and

(a) the rows of V (T ) span the treatment combinations in d,

(b) any pencil b appears in the defining relation of d if and only if V (T )b = 0,

(c) any two pencils b(1) and b(2), neither of which is a defining pencil, are aliased

with each other in d if and only if V (T )b(1) and V (T )b(2) are proportional to the same

point of P .

In view of Lemma 1, hereafter, an sn−m design of resolution three or higher is denoted

simply by the corresponding set T . Lemma 1(c), exhibiting a one to one correspondence

between the Ln−m points of P and the Ln−m alias sets, will be very useful. We now

introduce some more notation. Consider any point γ of P and any nonempty subset

Q of P . Let q denote the cardinality of Q and Ωiq be the set of q-vectors over GF (s)

having i nonzero elements. For i ≥ 1, define

Ai(Q) = (s− 1)−1#{λ : λ ∈ Ωiq, V (Q)λ = 0}, (2.4)

Bi(Q, γ) = (s− 1)−1#{λ : λ ∈ Ωiq, V (Q)λ is nonnull and proportional to γ}, (2.5)

where # denotes the cardinality of a set. In particular, if V (Q) has full row rank then Q

represents an sq−(q−n+m) design; in this case, by Lemma 1(b), (c), Ai(Q) is the same as

the Ai in the WLP of Q and Bi(Q, γ) is the number of ith order pencils appearing in the

alias set, corresponding to γ, of Q. Even if V (Q) is not of full row rank, the expressions

in (2.4) and (2.5) are well-defined, albeit without the above interpretation. We are now

in a position to present Lemma 2 below. Here Q, of cardinality q = Ln−m − q, is the

complement of Q in P , and

G3(q, q) =
1
6
(s− 1){q(q − 1) + q(q − 1)− qq}, (2.6)
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G4(q, q) =
1
24

(s− 1)[(s− 1){q(q − 1)(q − q − 2)− q(q − 1)(q − q − 2)}
−(3s− 5){q(q − 1) + 3q(q − 1)− 2qq}].

(2.7)

Lemma 2.

(a) A3(Q) = G3(q, q)−A3(Q),

(b) A4(Q) = G4(q, q) + (3s− 5)A3(Q) + A4(Q),

(c) if γ /∈ Q, then Ai(Q ∪ {γ}) = Ai(Q) + Bi−1(Q, γ), for i = 3, 4,

(d) if γ ∈ Q, then A3(Q) = A3(Q\{γ}) + B2(Q, γ) and A4(Q) = A4(Q\{γ}) +

B3(Q, γ)− (s− 2)B2(Q, γ).

Parts (a) and (b) of Lemma 2 are due to Suen, Chen and Wu (1997), who gave

expressions for G3 and G4 involving Krawtchouk polynomials. Additional algebra yields

the more explicit forms shown in (2.6) and (2.7) above. These can also be obtained

generalizing the approach in Tang and Wu (1996) to the s-level case. Unlike what hap-

pens with the MA criterion, we now require the details on G3 and G4 in order to obtain

certain relationships in explicit forms which can actually be needed in discriminating

among designs; see Theorem 1 and Example 2 below. Lemma 2(c) follows from Lemma

2 in Mukerjee and Wu (1999). Finally, Lemma 2(d) follows replacing Q by Q\{γ} in

Lemma 2(c) and then invoking the following lemma.

Lemma 3. If γ ∈ Q, then

(i) B2(Q\{γ}, γ) = B2(Q, γ) and

(ii) B3(Q\{γ}, γ) = B3(Q, γ)− (s− 2)B2(Q, γ).

Proof. Since the points of P are nonnull and no two of them are proportional to each

other, no nonnull linear combination of γ and a point from Q\{γ}, with both combining

coefficients nonzero, can be proportional to γ. Hence (i) follows from (2.5). Next suppose

the relation λ1γ
(1) +λ2γ

(2) +λ3γ
(3) = λ0γ holds for some nonzero elements λ1, λ2, λ3, λ0

of GF (s) and some three points γ(1), γ(2), γ(3) of Q. Then either each of γ(1), γ(2), γ(3)

belongs to Q\{γ}, or one of them, say γ(1), equals γ and the other two belong to Q\{γ}.
In the latter case λ1 6= 0, λ0, because no two points of P are proportional to each other,

so that there are s − 2 possibilities for λ1. Recalling (2.5), these considerations yield

B3(Q, γ) = B3(Q\{γ}, γ) + (s − 2)B2(Q\{γ}, γ), which, in conjunction with (i), yields

(ii). ¤

3. Expressions in terms of the complementary set

Consider now an sn−m design of resolution three or higher, represented by an n-
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subset T of P as envisaged in Lemma 1. Let T be the complement of T in P . The

cardinality of T is f = Ln−m − n. As before, γ is any point of P . Then the following

result holds.

Theorem 1.

(a) B1(T, γ) equals 1 if γ ∈ T , and 0 if γ /∈ T .

(b) If γ ∈ T then B2(T, γ) = 1
2(s− 1)(n− f − 1) + B2(T , γ).

(c) If γ /∈ T then B2(T, γ) = 1
2(s− 1)(n− f + 1) + B2(T , γ).

(d) If γ ∈ T then B3(T, γ) = H31(n, f)− (2s− 3)B2(T , γ)−B3(T , γ), where

H31(n, f) =
1
6
(s− 1)[(s− 1){(n− 1)(n− 2) + f(f + 3)− nf} − (n + f − 1)].

(e) If γ /∈ T then B3(T, γ) = H32(n, f)− (2s− 3)B2(T , γ)−B3(T , γ), where

H32(n, f) =
1
6
(s− 1)[(s− 1){(n− 1)(n− 2) + f(f + 3)− nf − 6}+ 2(n− 2f + 2)].

Proof. (a) This is obvious from (2.5).

(b) By Lemma 2(a),(c),(d), if γ ∈ T then

A3(T \{γ}) + B2(T, γ) = A3(T ) = G3(n, f)−A3(T ),

A3(T \{γ}) = G3(n− 1, f + 1)−A3(T ∪ {γ}) = G3(n− 1, f + 1)−A3(T )−B2(T , γ).

The truth of (b) now follows because G3(n, f)−G3(n− 1, f + 1) = 1
2(s− 1)(n− f − 1)

by (2.6).

(c) Follows from (b) interchanging the roles of T and T and hence those of n and f .

(d) By Lemma 2(b),(c),(d), if γ ∈ T then

A4(T \{γ}) + B3(T, γ)− (s− 2)B2(T, γ) = A4(T ) = G4(n, f) + (3s− 5)A3(T ) + A4(T ),

A4(T \{γ}) = G4(n− 1, f + 1) + (3s− 5)A3(T ∪ {γ}) + A4(T ∪ {γ})
= G4(n− 1, f + 1) + (3s− 5){A3(T ) + B2(T , γ)}+ A4(T ) + B3(T , γ).

Hence

B3(T, γ) = G4(n, f)−G4(n− 1, f + 1) + (s− 2)B2(T, γ)− (3s− 5)B2(T , γ)−B3(T , γ).

Using part (b), the result now follows noting that by (2.7),

G4(n, f)−G4(n− 1, f + 1) +
1
2
(s− 2)(s− 1)(n− f − 1) = H31(n, f).

(e) If γ /∈ T then interchanging the roles of T and T and hence those of n and f in

(d), B3(T , γ) = H31(f, n)− (2s− 3)B2(T, γ)−B3(T, γ), whence the result follows using

part (c) and the fact that H31(f, n)− 1
2(2s− 3)(s− 1)(n− f + 1) = H32(n, f). ¤
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With reference to the design T , recall that Bi(T, γ) is the number of ith order pencils

appearing in the alias set that corresponds to γ. Hence, for this design

#
i C

(k)
i = (k + 1)#{γ : γ ∈ P, Bi(T, γ) = k + 1}, 0 ≤ k ≤ Ki, 1 ≤ i ≤ n, (3.1)

#
i C

(k)
j =

∑
jk

Bi(T, γ), 0 ≤ k ≤ Kj , 1 ≤ i 6= j ≤ n, (3.2)

where
∑

jk is sum over γ such that γ ∈ P and Bj(T, γ) = k. Theorem 1 can now be

readily applied to (3.1) and (3.2) to yield expressions, in terms of the complementary set

T , for the leading terms #
1C2,

#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3 in the AENP given by (2.3). Thus

#
1C

(k)
2 = #

{
γ : γ ∈ T,

1
2
(s− 1)(n− f − 1) + B2(T , γ) = k

}
, (3.3)

#
2C

(k)
2 = (k + 1) [#{γ : γ ∈ T, 1

2(s− 1)(n− f − 1) + B2(T , γ) = k + 1}
+#{γ : γ ∈ T , 1

2(s− 1)(n− f + 1) + B2(T , γ) = k + 1} ],
(3.4)

#
1C

(k)
3 = #{γ : γ ∈ T, H31(n, f)− (2s− 3)B2(T , γ)−B3(T , γ) = k}, (3.5)

#
2C

(k)
3 =

∑(1)

3k

{1
2
(s−1)(n−f−1)+B2(T , γ)

}
+

∑(2)

3k

{1
2
(s−1)(n−f +1)+B2(T , γ)

}
,

and so on, where
∑(1)

3k is sum over γ such that γ ∈ T and H31(n, f)− (2s− 3)B2(T , γ)−
B3(T , γ) = k, while

∑(2)
3k is sum over γ such that γ ∈ T and H32(n, f)−(2s−3)B2(T , γ)−

B3(T , γ) = k.

The aforesaid expressions in terms of the complementary set T depend on T only

through B2(T , γ) and B3(T , γ), γ ∈ P. The calculation of these quantities is facilitated

if one writes T = {π1, . . . , πf}, considers the collections of vectors

M2 = {πi + απj : 1 ≤ i < j ≤ f ; α(6= 0) ∈ GF (s)}, (3.6)

M3 = {πi + α1πj + α2πu : 1 ≤ i < j < u ≤ f ; α1, α2(6= 0) ∈ GF (s)}, (3.7)

and observes from (2.5) that B2(T , γ) and B3(T , γ) are nothing but the numbers of

vectors, respectively in M2 and M3, that are nonnull and proportional to γ. Thus

one only needs to prepare frequency distributions, separately for M2 and M3, on the

basis of the proportionality of the vectors therein to the various γ (∈ P ). This is quite

straightforward, even by hand calculation, for relatively small f , in which case M2 and

M3 are also small in size. Here is an illustrative example.

Example 1. To simplify notation, denote any point (x1, x2, . . . , xn−m)′ of P by 1x12x2 · · ·
(n − m)xn−m , with ixi dropped if xi = 0. Consider a 3n−m design represented by

a set T of P such that T = {1, 2, 12, 122, 3}. Then f = 5, and since f < Ln−m,

we get n − m ≥ 3, i.e., n = Ln−m − f ≥ 8. Write T
∗ = {1, 2, 12, 122}, T ∗ =
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{13, 132, 23, 232, 123, 1232, 1223, 12232}, and note that T
∗ ⊂ T , T ∗ ⊂ T . From (3.6),

it can be seen that there are 20 vectors in M2, of which three are proportional to each

point of T
∗ and one is proportional to each point of T ∗. Similarly, by (3.7), out of

the 40 vectors in M3, four are null and three are proportional to each point of T
∗ and

T ∗. Thus among the five points of T , the four from T
∗ have B2(T , γ) = B3(T , γ) = 3

and the remaining one has B2(T , γ) = B3(T , γ) = 0. Similarly, among the n points of

T , the eight from T ∗ have B2(T , γ) = 1, B3(T , γ) = 3, and the remaining n − 8 have

B2(T , γ) = B3(T , γ) = 0. Since H31(n, f) = 1
3(2n2 − 17n + 80) in this example, from

(3.3)-(3.5) it now follows that for the design T ,

#
1C

(n−6)
2 = n− 8, #

1C
(n−5)
2 = 8, #

1C
(k)
2 = 0 for every other k;

#
2C

(n−7)
2 = (n− 6)(n− 8), #

2C
(n−6)
2 = 8(n− 5), #

2C
(n−5)
2 = n− 4,

#
2C

(n−2)
2 = 4(n− 1), #

2C
(k)
2 = 0 for every other k;

#
1C

(k)
3 = 8 if k = 1

3(2n2 − 17n + 80)− 6, #
1C

(k)
3 = n− 8 if k = 1

3(2n2 − 17n + 80),
#
1C

(k)
3 = 0 for every other k. ¤

While the results in this section cover the six leading terms in the AENP given

by (2.3), similar techniques will work, at the expense of heavier algebra, if we wish

to find their counterparts for the subsequent terms. However, this will not be needed

because, as seen in the next section, the results reported above are quite comprehensive

for discrimination among designs under the GMC criterion. Moreover, as ZLZA point

out, in many applications it is reasonable to assume the absence of factorial effects

beyond the third order, in which situation the six leading terms listed in (2.3) completely

determine the AENP.

4. GMC designs via complementary sets

The results of the last section are now applied to characterize GMC designs for

relatively small values of f which, as indicated earlier, are practically important. Special

attention is given to two- and three-level factorials. We consider f ≥ 3, since all designs

are isomorphic for f = 1, 2.

For a design T , let δ(T ) = (δ1(T ), . . . , δn(T )) be the vector with elements B2(T , γ),

γ ∈ T , arranged in the nondecreasing order. If

g(T ) = #{γ : γ ∈ T, B2(T , γ) > 0}, (4.1)

then the first n−g(T ) elements of δ(T ) are zeros, and the rest are positive. The next two

propositions will be useful. The first of these emerges from (2.3), (3.3) and Definition 1,
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and the second, giving a necessary condition for a design to have GMC, is evident from

the first.

Proposition 1. Consider two designs T1 and T2. Suppose δ(T1) 6= δ(T2) and let t be

the smallest integer such that δt(T1) 6= δt(T2). If δt(T1) < δt(T2) then T1 has less GLOC

than T2 and hence dominates the latter under the GMC criterion.

Proposition 2. A design T can have GMC only if it minimizes g(T ).

As an immediate application of Proposition 2, suppose f = Lw, 2 ≤ w ≤ n−m− 1.

Then by (2.5) and (4.1), g(T ) vanishes if and only if T is a (w − 1)-flat of P , i.e., an

Lw-subset of P that is closed (up to proportionality) under the formation of nonnull

linear combinations. Since all (w − 1)-flats are isomorphic, it is clear that in this case a

design T has GMC if and only if T is a (w− 1)-flat. Such a design is also known to have

MA and MEC (Suen, Chen and Wu, 1997; Cheng and Mukerjee, 1998).

Turning to two-level factorials, we now obtain GMC designs for 3 ≤ f ≤ 15. This

will facilitate comparison with Tang and Wu (1996) who gave MA designs for 3 ≤ f ≤ 11.

The cases f = 3, 7 and 15 are settled from the discussion in the last paragraph. The

following lemma helps in the remaining cases.

Lemma 4. Let s = 2.

(a) If f = 4, 5 or 6, then a design T can have GMC only if T is contained in a

2-flat.

(b) If 8 ≤ f ≤ 14, then a design T can have GMC only if T is contained in a 3-flat.

Proof. Only (b) is proved. The proof of (a) is similar and simpler. Let 8 ≤ f ≤ 14.

Then n − m ≥ 4. If n − m = 4, then T is contained in a 3-flat for every design and

there is nothing to prove. Suppose n−m ≥ 5. For 8 ≤ f ≤ 14, we can always choose T

as a subset of a 3-flat. For such a choice, say T 0, all sums involving a pair of points of

T 0 belong to the same 3-flat. Since this 3-flat has 15 points of which f are in T 0, there

are at most 15− f points outside T 0 which equal one of these sums. By (2.5) and (4.1),

therefore, g(T0) ≤ 15− f . In view of Proposition 2, it now suffices to show that

g(T ) > 15− f, (4.2)

whenever T is not contained in a 3-flat, i.e., rank[V (T )] ≥ 5. If rank[V (T )] = ρ, then

T has ρ linearly independent points which span
(
ρ
2

)
additional points as pairwise sums.

These
(
ρ
2

)
points are distinct and, among them, at most f − ρ are in T , i.e., at least(

ρ
2

)− (f−ρ) [=
(
ρ+1
2

)−f ] are outside T . Hence by (2.5) and (4.1), g(T ) ≥ (
ρ+1
2

)−f , and

the truth of (4.2) follows for ρ ≥ 6. For ρ = 5, we get g(T ) ≥ 15 − f . If equality holds

here then T consists of the five independent points, say π1, . . . , π5, and f −5 (> 0) of the
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10 pairwise sums arising out of π1, . . . , π5. The remaining 15 − f of these 10 pairwise

sums are outside T . In addition, if say, π1 + π2 is one of the f − 5 pairwise sums in T ,

then both π1 +π2 and π3 are in T but not their sum. Thus, outside T , there are at least

16− f points each of which equals the sum of two points of T . Hence by (2.5) and (4.1),

the truth of (4.2) follows again. ¤

For two-level factorials, Chen and Hedayat (1996) showed that if 2w−1 ≤ f ≤ 2w−1,

then the leading term A3 in the WLP is minimized only if T is contained in a (w−1)-flat.

One may wonder if this result can lead to a more general version of Lemma 4. However,

as A3 = 1
3

∑
k≥1 k #

1C
(k)
2 by (2.2), no exact connection between minimization of A3 and

the GMC criterion, that incorporates sequential maximization of #
1C

(k)
2 , 0 ≤ k ≤ K2,

emerges in an obvious manner. At any rate, Lemma 4 itself will suffice for the present

purpose of characterizing GMC designs for 3 ≤ f ≤ 15. The next example illustrates

how it reduces the search for T through the use of the catalog of 16-run designs given

by Chen, Sun and Wu (1993).

Example 2. Let s = 2 and f = 11. By Lemma 4(b), a design T can have GMC only

if T is contained in a 3-flat. But then T itself represents a 211−7 design, and following

Chen, Sun and Wu (1993), one needs to consider only three nonisomorphic choices of T ,

namely,

T1 = {1, 2, 3, 4, 12, 13, 23, 14, 24, 134, 234}, T2 = {1, 2, 3, 4, 12, 13, 23, 123, 14, 24, 34},
T3 = {1, 2, 3, 4, 12, 13, 23, 123, 14, 24, 124}.

The same notation as in Example 1 is used here for the points of P . Considering

the pairwise sums arising out of T1, T2 and T3, we get δ(T1) = (0n−4, 4, 5, 5, 5), δ(T2) =

δ(T3) = (0n−4, 4, 4, 4, 4), where 0u is the null row vector of order u. Hence by Proposition

1, both T2 and T3 dominate T1 under the GMC criterion. Moreover, as δ(T2) = δ(T3),

by (3.3), the designs T2 and T3 have the same #
1C2, and one has to consider the next

term #
2C2 in the AENP (2.3) in order to compare them. To that effect, one can proceed

as in Example 1 and employ (3.4) to show that for T2,

#
2C

( 1
2
n−7)

2 = (1
2n− 6)(n− 4), #

2C
( 1
2
n−3)

2 = 9(1
2n− 2),

#
2C

( 1
2
n−2)

2 = 3(n− 2), #
2C

(k)
2 = 0 for every other k,

while for T3,
#
2C

( 1
2
n−7)

2 = (1
2n− 6)(n− 4), #

2C
( 1
2
n−3)

2 = 6(n− 4),
#
2C

( 1
2
n−1)

2 = 3
2n, #

2C
(k)
2 = 0 for every other k.

Since n ≥ 20 for f = 11, it follows that T3 yields a larger #
2C

( 1
2
n−3)

2 than T2. Thus
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T3 represents the GMC design. Interestingly, here T2 is the MA design (Tang and Wu,

1996) and hence the MA and GMC criteria differ. Observe that the comparison of T2

and T3 under the GMC criterion involves the use of (3.4) which, in turn, requires explicit

knowledge of G3 as shown in (2.6). ¤

For s = 2 and 3 ≤ f ≤ 15, Table 1 shows the sets T for GMC designs. In particular,

this table yields 64-run 2n−(n−6) GMC designs for n ≥ 48 and 128-run 2n−(n−7) designs

for n ≥ 112, and hence supplements the tables in ZLZA. A comparison with Tang

and Wu (1996) shows that the designs shown in Table 1 also have MA except when

f = 10 (n−m ≥ 5) and f = 11.

We next consider three-level factorials and obtain GMC designs for 3 ≤ f ≤ 13.

This will facilitate comparison with Suen, Chen and Wu (1997) who gave MA designs

over the same range of f . The case f = 3 is straightforward and the cases f = 4 and 13

are settled from the discussion below Proposition 2. The following lemma, with a proof

analogous to that of Lemma 4, helps in the other cases.

Lemma 5. Let s = 3. If 5 ≤ f ≤ 12, then a design T can have GMC only if T is

contained in a 2-flat.

Example 3. Let s = 3 and f = 5. In view of Lemma 5, following Chen, Sun and Wu

(1993) as in the previous example, one needs to consider only three nonisomorphic choices

of T , namely, T1 = {1, 2, 3, 12, 1223}, T2 = {1, 2, 3, 12, 13} and T3 = {1, 2, 3, 12, 122}.
Note that T3 is the same as T of Example 1. Hence proceeding as in that example,

δ(T1) = (0n−8, 1, 2, 2, 2, 2, 2, 2, 4), δ(T2) = (0n−8, 1, 1, 1, 1, 2, 2, 3, 3), δ(T3) = (0n−8, 1, 1, 1,

1, 1, 1, 1, 1), and it is clear from Proposition 1 that T3 is the GMC design. ¤

For s = 3 and 3 ≤ f ≤ 13, Table 2 shows the sets T for GMC designs. In particular,

this table yields 27-run 3n−(n−3) GMC designs for 4 ≤ n ≤ 13. A comparison with

Suen, Chen and Wu (1997) shows that the designs shown in Table 2 also have MA. This,

however, does not imply that the two criteria lead to the same ranking of all designs

over this range of f . For instance with f = 8, even though the best design remains the

same for both criteria, the rankings of other designs differ.

Acknowledgment

The authors are thankful to the editors and referees for their careful examination

and encouraging comments to the paper. This work was supported by the NNSF of

China grant No. 10571093 and the SRFDP of China grant No. 20050055038. Muker-

jee’s research was also supported by the Visiting Scholar Program at Chern Institute of

Mathematics and a grant from CMDS, Indian Institute of Management Calcutta.



12 RUNCHU ZHANG AND RAHUL MUKERJEE

Appendix

Table 1. The sets T for 2n−m designs

f T

3 {1, 2, 12}
4 {1, 2, 12, 3}
5 {1, 2, 12, 3, 13}
6 {1, 2, 12, 3, 13, 23}
7 {1, 2, 12, 3, 13, 23, 123}
8 {1, 2, 12, 3, 13, 23, 123, 4}
9 {1, 2, 12, 3, 13, 23, 123, 4, 14}
10 (n−m = 4) {1, 2, 12, 3, 13, 23, 4, 14, 24, 34}
10 (n−m ≥ 5) {1, 2, 12, 3, 13, 23, 123, 4, 14, 24}
11 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124}
12 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34}
13 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134}
14 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234}
15 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}

Table 2. The sets T for 3n−m designs

f T

3 {1, 2, 12}
4 {1, 2, 12, 122}
5 {1, 2, 12, 122, 3}
6 {1, 2, 12, 122, 3, 13}
7 {1, 2, 12, 122, 3, 1223, 12232}
8 {1, 2, 12, 122, 3, 232, 1223, 12232}
9 {1, 2, 122, 3, 132, 232, 1232, 1223, 12232}
10 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123}
11 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232}
12 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 12232}
13 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 1223, 12232}
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